
Compute Cluster Server Lab 3: Debugging the parallel MPI programs
in Microsoft Visual Studio 2005

Compute Cluster Server Lab 3: Debugging the parallel MPI programs in Microsoft Visual Studio 2005

... 1
Lab Objective ...2

Overview of Parallel Debugging Methods in Microsoft Visual Studio 2005..................................... 2
Exercise 1 – Run the parallel programs locally ... 3

Task 1 –Run the Parallel Program Locally...3
Task 2 – Set the Parallel Debug Mode Parameters ..4
Task 3 – Run the Parallel Program in Debug Mode ..6

Exercise 2 – Debug the parallel programs in Microsoft Visual Studio 2005.................................... 7
Task 1 – Introduction into the Basic Debugging Methods ...7
Task 2 – Using the Conditional Breakpoints ..14
Task 3 - Hints for Debugging the Parallel Programs ..18
Task 4 – Survey of Typical Errors of Parallel Programs ..19

Discussions.. 20

One of the most important stages of developing computer programs is a process of searching and fixing bugs
that unavoidably appear in complex software systems. In order to simplify and automatize the process (usually
called debugging) it is necessary to use special software called debuggers. In spite of the fact that the complexity of
parallel programs usually greatly exceeds the complexity of serial analogues there was lack of qualitative debuggers
for parallel programs developed in MPI technology. The newest integrated development environment Microsoft
Visual Studio 2005 has an efficient parallel debugger which may be also used for debugging MPI applications.

Lab Objective
The lab objective is to learn how to debug parallel programs in the Microsoft Visual Studio 2005

environment. We assume that Compute Cluster Server SDK is installed on your workstation and therefore you use
MPI implementation of Microsoft Corp. (MS MPI). The lab assignments include:

• Exercise 1 – Run the parallel programs locally,
• Exercise 2 – Debug the parallel programs in Microsoft Visual Studio 2005.
Estimated time to complete this lab: 90 minutes.

Overview of Parallel Debugging Methods in Microsoft Visual Studio
2005

Debugging (process of searching and fixing bugs) is one of the most important stages of developing computer
programs which often takes even more time than the actually writing of the code being debugged. In order to
minimize the time for debugging it is necessary to follow the recommendations of the leading software companies
and the recognized experts in the field of computer science from the very beginning of software design and coding.
For instance, such recommendations require writing automatic tests for all parts of the developed programs and
checking values of variables using the ASSERT macro. But the procedure of debugging itself must also be done in
accordance with recommendations of the highly qualified experts in that field. The right choice of the debugger is
also of great significance where the debugger is a special program which simplifies essentially the process of
searching and fixing bugs, allows running programs in step-by-step mode, checking values of internal variables,
setting breakpoints etc. The most important criteria when choosing a debugger is а wide variety of debugging tools
and usability. During this Lab we will use the build-in debugger of Microsoft Visual Studio 2005(MS VS), which
successfully combines intuitive user interface and a wide spectrum of debugging tools.

One of the most important techniques of debugging is breaking the execution of the program at some specific
point of time in order to analyse the values of some program variables. The time of program breaking is defined by
selecting so-called breakpoints i.e. lines in the source code, on which the execution of the program is interrupted.
These breakpoints may be conditional if they are supplied with some conditions. In this case the programs are
interrupted at the breakpoints if and only if the conditions are true. For example, the condition may be the
requirement that the value of some variable has to be greater or equal to the given constant. The right choice of the
collection of breakpoint has critical importance for successful debugging. For instance, frequently the analysis of
variables just before the program crash will provide enough information to determine the cause of incorrect
erroneous work.

Another exceptionally useful tool is the ability to execute the program in step-by-step mode i.e. one line of
source code is executed each time you press the F10 button. At any moment the user can go to the next line or may
start to execute the function which is called at the current program line in step-by-step mode as well. Thus, the user
can always be at that level of desirable detailing.

In order to estimate all the advantages of debuggers it is necessary to compile your program in a special
debugging configuration (which is usually called Debug). In this configuration special debugging information is
added to the binary files. This information is used by the debugger to visualize the source code of the program being
executed.

The other most used tools of Microsoft Visual Studio 2005 are the following:
• The window Call Stack – the window shows the current stack of function calls and allows to switch the

context to each of functions in the stack (that makes possible to check local variables of the functions),
• The window Autos– the window shows values of variables used in the current and the previous lines of the

code. Besides the window can show values returned by the called functions. The list of shown variables is
formed by MS VS automatically,

• The window Watch– the window shows values of variables selected by the user. It makes possible to
check variables not presented in the window Autos,

• The window Thread– the window allows switching from one thread of the process to another,
• The window Process – the window allows switching among debugged processes (for example, in the case

of MPI programs).

The debugging of parallel MPI programs has some peculiarities caused by the nature of parallel programming.
There are several processes working with the same problem simultaneously. And each of the processes might have
several command threads. It makes debugging more complicated because in addition to errors being typical for
serial programs there are also errors which appear only in parallel ones. One of results of parallel programming is
race conditions where several processes of the parallel program interact without special synchronization. In that case
the sequence of operations depends on the varying state of computing system. So the sequence of the executed
operations might be different from one program run to another. Therefore checking of correctness by using tests,
one of the most used methods of debugging, can not help as a single test can not uncover race conditions.

However the tools and the methods used in Microsoft Visual Studio 2005 for debugging both serial and
parallel programs have many points in common and so if you have some good experience of serial debugging then
debugging parallel programs won’t be very difficult to you.

As a teaching example of parallel program for the following lab exercises we will use the project developed in
the preliminary lab "Parallel Programming Using MPI".

Exercise 1 – Run the parallel programs locally
Before starting your program on a multiprocessor computing system (cluster) it is desirable to execute a few

tests on a local workstation (in case of using a single-processor computer all processes of the parallel program will
run in time-sharing mode). That way of parallel programs execution is usually more effective in respect to
debugging as it does not demand any remote access to the cluster and user does not need to wait for actual start of
the program on the cluster. Besides such experiments are usually executed for simpler and smaller input parameters.
Those all allow to fix quickly the most of bugs in the parallel program.

To execute the experiments locally it is necessary to install both client utilities of Microsoft Compute Cluster
Pack and Microsoft Compute Cluster Server SDK.

In this exercise we will learn how to set necessary parameters of Microsoft Visual Studio 2005 for debugging
parallel MPI programs and we will start a program in debug mode.

Task 1 –Run the Parallel Program Locally
• Select the configuration Release and compile the parallel project of Pi calculation (parallelpi) in

accordance with instructions in Lab 2 “Carrying out Jobs under Microsoft Compute Cluster Server 2003”,
• Open the command window (“Start->Run”, enter command cmd and press the key Enter),
• Go to the directory which contains the compiled program (for instance, in order to pass on to the directory

“D:\Projects\senin\mpi_test\parallelpi\Release” enter a command to set the disk d: and then go to the
appropriate directory by entering the command “cd D:\Projects\senin\mpi_test\parallelpi\Release”),

• To start a program in serial mode using 1 process only it is enough to enter the program name and the

command line arguments. For instance, “parallelpi.exe 1500”,

• To start a program in parallel mode on your workstation locally enter the command “mpiexec.exe –n

<number of processes> parallelpi.exe <command line parameters >”. In our case the only command
line parameter of the parallel program of Pi calculation is the number of intervals for definite integral
computing,

Task 2 – Set the Parallel Debug Mode Parameters
It is necessary to tune up Microsoft Visual Studio 2005 properly so that you can debug the parallel MPI

programs:
• Open the parallel project of Pi computing (parallelpi) in Microsoft Visual Studio 2005,

• Open the menu option Project->paralellpi Properties…. In the opened window of project settings choose

the item Configuration Properties->Debugging. Select the following settings:
− In the field Debugger to launch select MPI Cluster Debugger,
− In the field MPIRun Command enter “mpiexec.exe” – the name of the program which is used for

starting the parallel MPI programs,
− In the field MPIRun Argument enter the arguments of the utility mpiexec. For instance, enter “-np

<number of processes>” to set the number of processes which will be launched,
− In the field Application Command enter the name of the parallel program to start,
− In the field Application Argument enter the command line arguments of the parallel program,
− In the field MPIShim Location” enter the path to the utility “mpishim.exe” – a special program

delivered with Microsoft Visual Studio 2005. This utility is used for debugging the remote programs,
• Press OK to save settings,

• Choose the menu option Tools->Options. In the window of project settings choose the item Debugging-

>General. Check Break all processes when one process breaks to break all processes of parallel program
in case of one of processes was suspended. If you want the rest processes to be executing when one is
suspended uncheck the checkbox (the recommended setting).

Task 3 – Run the Parallel Program in Debug Mode
• After settings described in the previous task you will be able to debug the parallel MPI programs. So, if you

start the program under Microsoft Visual Studio 2005 (the command Debug->Start Debugging) several
processes will be started at the same time (the number of processes corresponds to the setting from the

previous task). Each of started processes has own console window. You can break each of the processes by
using Microsoft Visual Studio 2005 commands and debug it. The detailed description of debugging will be
given in the next exercise.

Exercise 2 – Debug the parallel programs in Microsoft Visual Studio
2005

Task 1 – Introduction into the Basic Debugging Methods
• Open the parallel project of Pi calculating (parallelpi) and tune up Microsoft Visual Studio 2005 in

accordance with the instructions from the previous exercise (if the settings have not been done yet). Set the
number of processes to 2. Open the file “parallelpi.cpp” by double clicking to its icon in the window
Solution Explorer,

• Set the breakpoint in the line which allocates the memory by means of using the function malloc: set the
blinking cursor to the line where you want to set the breakpoint and press the key F9,

• Select the debugging configuration (Debug) in the popup menu on the toolbar. Start the program in debug

mode: select the menu option Debug->Start Debugging or press the button with green triangle () on
the Microsoft Visual Studio 2005 toolbar. The program will be started and three console windows will be
opened: the window of the process “mpiexec.exe” and 2 console windows corresponding to processes of
the parallel program. When the program arrives at the breakpoint the execution of processes will be
suspended,

• Open the window Call Stack by selecting the menu option Debug->Windows->Call Stack. The window

shows the current functions stack and allows to switch the context to any function in the stack. It helps to
examine a sequence, in which the functions were called and to check the local variables of the functions
from the stack. Double click on the function located in the stack under the current one. The context will be
changed and you will see the code of a library function which has called the function main,

• Double click on the function “main” in the window Call Stack. Open the window Autos by selecting the

menu option Debug->Windows->Autos. The window Autos shows values of variables used in the current
and the previous lines of code. You can not change the set of variables as it is selected by Microsoft Visual
Studio 2005 automatically,

• Open the window Watch by selecting the menu option Debug->Windows->Watch->Watch 1. In this

window you can see the values of variables, which are not given in the window Autos. For example, enter
name of the variable ReferencePI in the column Name of the window Watch, press the key Enter. After
that the current value of the variable will appear in the column Value and its type is shown in the column
Type,

• Open the window Processes by selecting the menu option Debug->Windows->Processes. You will see the

window with the list of processes of the parallel MPI program (2 processes in our case). Input the variable
MyID (the identifier of the current process) in the window Watch. Keep in mind the variable value. After
that change the current process by double click on another process in the window Processes. Watch the
value of the variable MyID which should be different from the previous one as each process in the MPI
program has a unique identifier. While using the window Processes it is necessary to take into account two
aspects:
− You can activate only a suspended process (to suspend the process you can set a breakpoint or select

the running process in the window Processes and execute the command Break Process using the button
with the icon in the form of two vertical lines in the window Processes

− There is the column ID in the window Processes - the Windows process identifier. It is important to
remember that the mentioned identifier is not related to the identifier (rank) of the process in MPI
program,

• Select the process with the identifier MyID equal to 0. Input the variables processor_name and

all_proc_names in the window Watch. The variable all_proc_names is an array of node names on which
parallel processes have been started up. The array is only used on the process with the identifier 0. To
visualize the values of two array elements enter the text “all_proc_names,2” in the column Name. After
that you may see the values of first two array elements pressing “+” on the left of the variable name. Keep
pressing the button F10 for the step-by-step execution of the program. After each step you may see
changing of the values of the program variables. So, after the function call MPI_Gather the process with
the identifier 0 will contain the names of all the nodes on which parallel processes are executed. If the
current code line is a function call we can start to examine the execution of this function by pressing the
key F11 (in our example all the functions being called are system ones and you will not be able to see their
source code).

Task 2 – Using the Conditional Breakpoints
We have already used breakpoints in the previous tasks. In this task we will consider how to use conditional

breakpoints, i.e. breakpoints which are supplied with some conditions and the program execution is suspended at
breakpoint lines only in cases when the breakpoint conditions are true. Using conditional breakpoints is more
efficient in several cases as a programmer can set necessary requirements of interrupting the program execution in
detail:

• Open the parallel project of Pi calculation (parallelpi) and make settings necessary for debugging MPI
programs (if it has not been done yet) and choose the number of the started processes equal to 2. Open the
file parallelpi.cpp (by double click on the file in the window Solution Explorer),

• Set a breakpoint at any line of the program (for instance, in the line with the function MPI_Init) and start
debugging. After arriving at this breakpoint process execution will be suspended,

• You may specify breakpoints which will interrupt only the processes (or threads) you need. To do it set

another breakpoint below the current program line, click on the red sign of the new breakpoint by the right
mouse button and choose the option Filter in the context menu,

• In the open window you can indicate those processes and threads execution of which must be interrupted

when arriving at the breakpoint chosen. Moreover, it is possible to indicate the computational node name
on which the breakpoint will interrupt processes (this parameter is used in the case if a subset of the
processes to be debugged is running on remote nodes). While writing logical expressions you can use
logical operations AND (you can also use the sign &), OR (||), NOT (!). For instance, to indicate that
single process should be interrupted, the expression ProcessId = <process identifier> should be used
where process identifier may be found out in the window Processes. Press the button OK to save the
settings,

• Moreover, you may set conditions for values of the variables. To enter the conditions right-click on the

breakpoint and choose the option Conditions,

• In the opened window you may set conditions of two types:

− Conditions of the first type allow to interrupt the program execution if the given conditions are true. To
use this possibility tick the option Is true and enter a conditional expression in the field Conditions.
While entering the expression the syntax of the algorithmic language C is used. So, for interrupting the
process with the identifier 0 only it is necessary to input the condition MyID == 0,

− Conditions of the second type interrupts the program execution if the value of the given expression (not
necessarily logical) has changed since previous execution of the statement marked by breakpoint. For
switching this type of condition on tick the option Has changed,

• Tick the option Is true and enter the condition MyID == 0. Press the button OK to save this condition.

Task 3 - Hints for Debugging the Parallel Programs
Microsoft Visual Studio debugger of parallel MPI programs first appeared in Microsoft Visual Studio 2005.

However, compiling and debugging the parallel MPI program may also be performed by means of earlier versions
of the development environment. In this case the following standard debugging techniques can be applied:

• Using text messages which are outputted to a file or on the screen with values of the variables you are
interested in and/or information about what part of the program is being executed. Such approach is often

called printf debugging as the function printf is mostly used for message outputting to the console. This
method is easy enough because it does not require special skills for working with any debugger and makes
possible to find bugs in the course of proper use. Nevertheless, to get the value of a new variable you have
to write new code for printing, recompile the program and run the program once again. It requires a lot of
time. Moreover, adding a new code to the program may lead to temporary disappearance of some errors,

• Using a serial debugger. As a MPI program consists of several interacting processes it is possible to start
several copies of a serial debugger attaching each copy of the debugger to a certain process of the MPI
program. As a rule this approach allows to debug the parallel programs more efficiently than in case of
using text messages. The main disadvantage of the approach is the necessity of doing the same repeated
actions manually. Let us imagine, for example, the necessity of interrupting 32 processes of the MPI
program. If you use the serial debugger you have to select sequentially each of the 32 processes and initiate
manually the interruption commands.

The parallel debugger of Microsoft Visual Studio 2005 does not contain such drawbacks and makes possible
to save time for debugging. It is achieved by means of the environment considering all the processes of the MPI
program as a single program being executed in parallel and thereby provides parallel debugging near to debugging
of serial programs. Among the features of the parallel debugging the window Processes considered above can be
mentioned. This window allows switching among parallel processes. Additional settings of Microsoft Visual Studio
2005 are also useful (see Task 2 of Exercise 1).

Task 4 – Survey of Typical Errors of Parallel Programs
All the errors that appear in the serial programming are also typical for the parallel programming.

Nevertheless, there are specific errors arising as the result of availability of several interacting processes executed in
parallel. The complexity of the parallel program development results in higher requirements to the skills of
programmers which develop parallel programs. Although it is categorize all the types of errors arising in
programming with using MPI we will briefly describe the most typical errors making by the beginner developers.
We will mention three of the most typical errors in the parallel programming:

• Deadlock in message transfer. Let us suppose that n processes transmit information one to another in the
chain order: the i-th process transfers information to the (i+1)-th (for indices i=0,…,n-2) and the (n-1)-th
process transmits information to the process with the rank 0. The transmissions are performed with using
the function of sending messages MPI_Send and the function of receiving messages MPI_Recv and each
process calls firstly MPI_Send and then MPI_Recv. These functions are blocking, i.e. MPI_Send returns
control only after the transmission is finished or after the message was copied to the internal buffer. Thus,
the standard assumes the situation when the functions which sends messages returns control only after the
transmission is complete. But the transmission can not be finished until the receiving process calls the
MPI_Recv function. In it's part, the function MPI_Recv is called only after the sending of the current
process messages is finished. As the chain of message transmissions is closed sending the messages can
never finish because each process will wait for finishing of sending its message and no one will call the
function of message receiving. To avoid such blocking it is possible, for instance, by calling firstly the
function MPI_Send and then the function MPI_Recv on the process with even indices, and making these
calls in the reverse order on the process with odd indices. In spite of the evidence of this mistake it is often
made as in the case of small messages there is a great likelihood that the messages will be placed in the
internal memory buffers of the library and the error will not be discovered,

Process 0

MPI_Send(…) MPI_Send(…)

MPI_Send(…)

Process 1 Process 2

• Release or change of buffers used for non-blocking transmission. The non-blocking MPI functions
return control immediately and pointers to message arrays are stored in the structures of the MPI library.
When the actual message transmission is executed (in a separate thread) the network thread will read the
data from the initial message array. Therefore, it is very important that this memory buffer is not deleted or
changed before the transmission is finished (you can determine whether the transmission has been
completed by means of calling the special functions). Often this rule is forgotten and it leads to
unpredictable program behavior,

• Mismatch of calls for functions of sending and receiving messages. It is important to pay attention that
the function call of sending message corresponds to the function call of receiving message and vice versa.
However, in the case when number of transmissions is not known in advance and is determined in the
course of computations it is easy to make mistake and not to guarantee the fulfillment of the given
condition. This error type includes also calls of functions for sending and receiving messages with
mismatched tags of message identification.

Discussions
• How to test the correctness of a parallel program developed with using the MS MPI library locally, before

launching on a cluster? What software should be set on your workstation to carry out such testing?
• List and give a short description of the main debug windows in the Microsoft Visual Studio 2005

environment which can be used for debugging.
• What is a breakpoint? Why is it used? What is a conditional breakpoint?
• What is the main advantage of debugging the parallel MPI programs in Microsoft Visual Studio 2005?
• What typical programming errors appear if you use MPI technology?

	Compute Cluster Server Lab 3: Debugging the parallel MPI pro
	Lab Objective

	Overview of Parallel Debugging Methods in Microsoft Visual S
	Exercise 1 – Run the parallel programs locally
	Task 1 –Run the Parallel Program Locally
	Task 2 – Set the Parallel Debug Mode Parameters
	Task 3 – Run the Parallel Program in Debug Mode

	Exercise 2 – Debug the parallel programs in Microsoft Visual
	Task 1 – Introduction into the Basic Debugging Methods
	Task 2 – Using the Conditional Breakpoints
	Task 3 - Hints for Debugging the Parallel Programs
	Task 4 – Survey of Typical Errors of Parallel Programs

	Discussions

